Software System Design and Implementation

Wrapping up

The University of New South Wales
School of Computer Science and Engineering
Sydney, Australia

COMP3141 17s1

| essons |learnt

=l
L |
(8 e unive OF NEW SOUTH WALES

RSITY

YYYYYY e AUSTRALIA

Think about properties!

* First think about what your programs is supposed to do!

» How it does what it does comes later. Tells us that reverse is

its own inverse, without
- Examples: telling us how
» prop_revApp Xs ys =
_ Properties as types
reverse (xs ++ ys) == reverse ys ++ reverse X§

» Binary search tree property

Properties help design

* Properties apply to large system components as well as to individual
functions

Properties discourage premature focus on implementation detail and
optimisations

Properties can naturally lead to formal specification if that is desired

Properties may be formal or informal

Properties are resilient to refactoring

Convey meaning precisely

Properties help reasoning

* Properties are essential to formal reasoning
» Can be denoted using formal logic and/or type systems
» Deductive systems

- Link between compiler (i.e., type checker) and programmer

* Properties also facilitate informal reasoning

* Properties are precise

Properties help testing

* Property-based testing using randomised test-case generation
» Reduces the amount testing code
» Provides better documentation than unit tests
» Increased coverage by repeated testing

- Ties in with (formal) specifications

« Can be combined with formal verification

Type systems are powerful tools

- Types are embedded in the program and change with the program

- Types are always checked by the compiler

 Types can be as expressive and precise as we like

- Every type checker is a theorem prover!

Assurance IS a continuum

« The level of desired assurance depends on the application
- Good tools work at different levels of the spectrum
» Properties support informal reasoning, testing, and formal verification

» Types can be rather simple (as in C) or very precise (as in Haskell
GADTs, dependent types etc)

- Usually we need to mix different levels in one application

Applying the technigues

The lessons apply to all programming languages

- Think about properties

» Applies fully to imperative and object-oriented programming

» Properties can take global state and side effects into account

» Requires shifting your attention from the details to the big picture
* Types

» C++, C#, Scala, Rust and Java have sophisticated type systems, too — use
them

» Think about types/contracts in dynamically typed languages

S00st your productivity with functional
programming

- But there are many other functional languages widely used — a small sample:

» Erlang — developed by Ericsson, but used by many other companies,
too

» Clojure — Lisp dialect hosted on the JVM, strong concurrency support
» Scala — mixed-paradigm, FP & OO on the JVM (Twitter, LinkedIn, etc.)
» Swift — mixed-paradigm, FP & OO (Apple’s heir to Objective-C)

» F# — Microsoft's FP language in Visual Studio 2010

Coursework

- COMP3161: Concepts of Programming Languages (S2, Liam)

- COMP4161: Advanced Topics in Software Verification (S2, June Andronick,
Gerwin Klein)

COMP 3161 —
Concepts of Programming Languages

- What makes programming languages tick?

- |Is there a system behind all those different language features?

- Static and dynamic semantics of common programming language features

COMP 4161

COMP4161 - Advanced Topics in Software Verification
Gerwin Klein, June Andronick

2018 - Session 2

- Advanced Topics in Software Verification

- learn how to use an interactive theorem prover

- automation, Higher-Order Logic, program verification

- done by the people who did the selL4 proof

- prereq: if you know functional programming and/or basic logic, you will
be fine

Dr.Dobb's Journal Presents;

(5
HOME GURL BLOGS MEVIBER BLOGS FORUMS LOG N SUBSCRIBE

Fosled by Jon Zrcsson in

Itdoesr't matier how oug-frze your application scftware is if the underlying OS is buc-rdden.

COMP3151 — Foundations of Concurrency

+ Design and implementation of

» multi-threaded,

» parallel, and

» distributed programs.
- Talk, write, and reason about such programs — including formal reasoning.
* Appreciate the complexities involved in the above.

- Fundamentals for the next big round of kernel verification at NICTA!

Cogent

- With Data61, UNSW Systems and Formal Methods group
* Functional language for systems programming

« Code and proof co-generation

Structure

2 hour closed book exam (you can bring two A4 pages of handwritten notes,
single sided)

4 questions

Each question has several subquestions (either 4 or 5 subquestions)

» The subquestions are not of equal value

You will get two answer booklets (one for Q1 & Q2 and one for Q3 & Q4)

Format of questions and answers

* There are three types of subqguestions:
» textual questions (asking for an explanation),
» coding questions (asking for Haskell code), and

» a combination of the two previous types.

 Textual questions

» They test your understanding of various concepts, or ask you to explain
some code.

» A few sentences are sufficient for each subquestion.

» Overly verbose answers will lose marks.

- Coding questions

» They require you to write Haskell code

» A few lines of code suffice

» Always include type signatures; add brief comments where helpful

» Keep your answers clear — confusing or illegible code loses marks

» Small syntactic mistakes will not lose marks; serious mistakes will

Tips
- The various subquestions are of strongly varying difficulty
- Some of the later questions are pretty easy
* Proceed as follows:
1. Carefully read through the entire exam

2. Mark easy questions that seem easy to you

3. Do the easy questions first!

How to prepare

- Have a look at the sample exam (ignore the assignment of marks)
- Make sure that you can solve all the exercises

- Make sure that you understand all the Haskell code that | posted together
with the lecture slides

Supplementary exam

* | generally do not award a supplementary exam to students who sat the final
» The supplementary exam is only for absentees

« Don’t sit the exam if you’re unwell

 To be considered for the supplementary exam, you must
» have completed all other course components to a satisfactory standard,
» have been absent from the final exam, and

» have requested special consideration at NSQ within three working days.

= UNSW
%’\—/J: THE UNIVERSITY OF NEW SOUTH WALES

YYYYYY e AUSTRALIA

