
Software System Design and Implementation

The University of New South Wales

School of Computer Science and Engineering

Sydney, Australia

COMP3141 17s1

Wrapping up

Lessons learnt

Think about properties!

• First think about what your programs is supposed to do!

‣ How it does what it does comes later.

• Examples:

‣ prop_revApp xs ys =

 reverse (xs ++ ys) == reverse ys ++ reverse xs

‣ Binary search tree property

‣ How do different operators relate to each other (turtle graphics)

Tells us that reverse is
its own inverse, without

telling us how

Properties as types

Properties help design

• Properties apply to large system components as well as to individual
functions

• Properties discourage premature focus on implementation detail and
optimisations

• Properties can naturally lead to formal specification if that is desired

• Properties may be formal or informal

• Properties are resilient to refactoring

• Convey meaning precisely

Properties help reasoning

• Properties are essential to formal reasoning

‣ Can be denoted using formal logic and/or type systems

‣ Deductive systems

• Link between compiler (i.e., type checker) and programmer

• Properties also facilitate informal reasoning

• Properties are precise

Properties help testing

• Property-based testing using randomised test-case generation

‣ Reduces the amount testing code

‣ Provides better documentation than unit tests

‣ Increased coverage by repeated testing

• Ties in with (formal) specifications

• Can be combined with formal verification

Type systems are powerful tools

• Types are embedded in the program and change with the program

• Types are always checked by the compiler

• Types can be as expressive and precise as we like

• Every type checker is a theorem prover!

Types link programs
and proofs!

Assurance is a continuum

• The level of desired assurance depends on the application

• Good tools work at different levels of the spectrum

‣ Properties support informal reasoning, testing, and formal verification

‣ Types can be rather simple (as in C) or very precise (as in Haskell
GADTs, dependent types etc)

• Usually we need to mix different levels in one application

Applying the techniques

The lessons apply to all programming languages

• Think about properties

‣ Applies fully to imperative and object-oriented programming

‣ Properties can take global state and side effects into account

‣ Requires shifting your attention from the details to the big picture

• Types

‣ C++, C#, Scala, Rust and Java have sophisticated type systems, too — use
them

‣ Think about types/contracts in dynamically typed languages

Boost your productivity with functional
programming

• But there are many other functional languages widely used — a small sample:

‣ Erlang — developed by Ericsson, but used by many other companies,
too

‣ Clojure — Lisp dialect hosted on the JVM, strong concurrency support

‣ Scala — mixed-paradigm, FP & OO on the JVM (Twitter, LinkedIn, etc.)

‣ Swift — mixed-paradigm, FP & OO (Apple’s heir to Objective-C)

‣ F# — Microsoft's FP language in Visual Studio 2010

Coursework

• COMP3161: Concepts of Programming Languages (S2, Liam)

• COMP4161: Advanced Topics in Software Verification (S2, June Andronick,
Gerwin Klein)

COMP 3161 —
Concepts of Programming Languages

• What makes programming languages tick?

• Is there a system behind all those different language features?

• Static and dynamic semantics of common programming language features

COMP 4161

COMP4161 - Advanced Topics in Software Verification
Gerwin Klein, June Andronick

2018 - Session 2

 - Advanced Topics in Software Verification
 - learn how to use an interactive theorem prover
 - automation, Higher-Order Logic, program verification
 - done by the people who did the seL4 proof
 - prereq: if you know functional programming and/or basic logic, you will
be fine

COMP3151 — Foundations of Concurrency

• Design and implementation of

‣ multi-threaded,

‣ parallel, and

‣ distributed programs.

• Talk, write, and reason about such programs — including formal reasoning.

• Appreciate the complexities involved in the above.

• Fundamentals for the next big round of kernel verification at NICTA!

Cogent

• With Data61, UNSW Systems and Formal Methods group

• Functional language for systems programming

• Code and proof co-generation

Structure

• 2 hour closed book exam (you can bring two A4 pages of handwritten notes,
single sided)

• 4 questions

• Each question has several subquestions (either 4 or 5 subquestions)

‣ The subquestions are not of equal value

• You will get two answer booklets (one for Q1 & Q2 and one for Q3 & Q4)

Format of questions and answers

• There are three types of subquestions:

‣ textual questions (asking for an explanation),

‣ coding questions (asking for Haskell code), and

‣ a combination of the two previous types.

• Textual questions

‣ They test your understanding of various concepts, or ask you to explain
some code.

‣ A few sentences are sufficient for each subquestion.

‣ Overly verbose answers will lose marks.

• Coding questions

‣ They require you to write Haskell code

‣ A few lines of code suffice

‣ Always include type signatures; add brief comments where helpful

‣ Keep your answers clear — confusing or illegible code loses marks

‣ Small syntactic mistakes will not lose marks; serious mistakes will

Tips

• The various subquestions are of strongly varying difficulty

• Some of the later questions are pretty easy

• Proceed as follows:

1. Carefully read through the entire exam

2. Mark easy questions that seem easy to you

3. Do the easy questions first!

How to prepare

• Have a look at the sample exam (ignore the assignment of marks)

• Make sure that you can solve all the exercises

• Make sure that you understand all the Haskell code that I posted together
with the lecture slides

Supplementary exam

• I generally do not award a supplementary exam to students who sat the final

‣ The supplementary exam is only for absentees

• Don’t sit the exam if you’re unwell

• To be considered for the supplementary exam, you must

‣ have completed all other course components to a satisfactory standard,

‣ have been absent from the final exam, and

‣ have requested special consideration at NSQ within three working days.

